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The present work utilised purple potatoes as the raw material to perform response surface 

methodology (RSM) and an artificial neural network (ANN) model. The objectives of the 

present work were to enhance the efficiency of ultrasound-assisted enzymatic extraction 

of total flavonoids from purple potatoes, and evaluate their antioxidant activity. The results 

demonstrated that the ANN model achieved a higher predictive accuracy, with a 

correlation coefficient of 0.99553 than the RSM model (R2 = 0.9919). The optimal 

extraction process conditions were the addition of 51.34 U/mL enzyme, extraction 

duration of 36.21 min, and extraction temperature of 53.12°C. The total flavonoid yield 

was 9.81 mg/g under these conditions, suggesting higher prediction ability of ANN. The 

scavenging rates of OH and DPPH(2,2-diphenyl-1-picrylhydrazyl) were 81.6 and 61.8%, 

respectively, for the purple potato extract concentration of 0.24 mg/mL. The present work 

proposes a novel approach integrating ANN with ultrasonic-assisted enzymatic extraction 

to predict and optimise flavonoid yields, demonstrating superior accuracy over traditional 

methods. The findings advance the extraction of bioactive compounds, and highlight 

ANN's potential for modelling complex non-linear relationships in food science. 
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Introduction 

 

Purple potatoes (Solanum tuberosum L.) are 

tubers with purplish-red roots. They are also known 

as as purple sweet potatoes or black potatoes. 

Originally, they were primarily cultivated in New 

Zealand, South Korea, and Japan. Presently, however, 

they are also grown extensively in China (Steed and 

Truong, 2008). Purple potato is ranked as the seventh 

largest crop globally after rice, wheat, maize, potato, 

sugarcane, and cassava. However, their nutritional 

and health potential has neither been properly 

explored nor utilised (Esatbeyoglu et al., 2017). 

Purple potatoes are rich in carbohydrates, dietary 

fibres, carotenes, minerals, and a diverse range of 

bioactive compounds. Flavonoids are critical 

bioactive constituents of plant secondary metabolites, 

and found abundantly in purple potatoes (Cai et al., 

2016; Huang et al., 2019; Wang et al., 2022). They 

may be classified into many types such as flavonoids, 

flavonols, flavanones, isoflavones, and anthocyanins 

(Panche et al., 2016). Notably, flavonoids exhibit a 

multitude of functional attributes such as anti-

inflammatory, antiviral, hypoglycaemic, antioxidant, 

and liver-protective properties (Corcoran et al., 2012; 

Samsonowicz et al., 2019; Luo et al., 2021; Badshah 

et al., 2021). 

Traditional methods for extracting 

phytochemicals, such as solvent extraction, are 

widely used due to their simplicity and cost-

effectiveness. However, they suffer from low 

selectivity, environmental and health risks, and 

potential degradation of heat-sensitive compounds 

(Chen et al., 2022). Enzyme-assisted extraction 

improves selectivity by targeting specific cell wall 

components, but faces challenges such as high costs 

and sensitivity to operational conditions (Amiri-Rigi 

et al., 2016). Ultrasonic-assisted enzymatic extraction 

(UAEE) was selected as the primary method in the 

present work due to its synergistic advantages in 

enhancing flavonoid yield and efficiency (Wu et al., 

2014; Nag and Sit, 2018). Ultrasonication generates 
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cavitation bubbles that disrupt plant cell walls, 

facilitating the release of intracellular compounds and 

enzymatic hydrolysis by cellulase, pectinase, and 

hemicellulose, and specifically targets the 

polysaccharides present in the cell wall, further 

improving extraction efficiency (Ahmad-Qasem et 

al., 2013; Singla and Sit, 2021). This combined 

approach is particularly suitable for purple potatoes, 

because their dense cellular structure and high starch 

content pose challenges when conventional 

extraction methods are used. Moreover, UAEE 

operates at lower temperatures than the thermal 

methods, preserving the stability and bioactivity of 

heat-sensitive flavonoids (Hou et al., 2019). Besides, 

aspects of scalability, cost-effectiveness, and 

environmental sustainability align with the growing 

demand for green extraction technologies in the food 

and pharmaceutical industries. 

Response surface methodology (RSM) is a 

valuable technique for mathematical modelling and 

statistical analysis. It is well known for its simplicity, 

speed, and reliability. RSM is commonly employed to 

optimise the extraction of bioactive compounds such 

as flavonoids, polyphenols, and polysaccharides. It is 

extensively used in fields such as food engineering, 

bioprocessing, and pharmaceuticals (Liu et al., 2017; 

Riciputi et al., 2018). Artificial neural networks 

(ANN) are computational modelling methods that 

imitate biological neural networks to process 

information in a distributed and parallel manner. It 

can tolerate errors, learn on its own, and adapt and 

approximate data accurately. ANN are widely used to 

extract and parametrise bioactive substances 

(Onukwuli et al., 2021; Wu et al., 2024). Moreover, 

ANN exhibit greater adaptability than RSM, which 

enables them to effectively handle complex non-

linear interactions, and construct models by learning 

from experimental data. Ciric et al. (2020) 

successfully determined the optimal process 

conditions for extracting polyphenols from garlic 

using UAEE, and employing both RSM and ANN. 

Their findings demonstrated a strong correlation 

between the predicted values from the ANN model 

and the actual total phenol and total flavonoid 

contents, with coefficients of correlation (R) of 

0.9998, 0.9733, and 0.9821 for the training, 

validation, and testing phases, respectively. These 

results indicated that the ANN model outperformed 

the RSM model in terms of predictive accuracy and 

efficiency. 

Apart from these sporadic studies, there is 

limited research utilising ANN in combination with 

UAEE of bioactive compounds from purple potatoes. 

To address this gap, we employed UAEE to extract 

total flavonoids from purple potatoes. The RSM and 

ANN integration optimised the extraction conditions 

for total flavonoids, demonstrating a robust 

methodological framework that can be adapted by 

future studies to extract bioactive compounds. 

Furthermore, an analytical assessment of the 

antioxidant activity of the flavonoids was conducted 

to establish a solid research foundation for the 

extraction of active substances from plants. 

 

Materials and methods 

 

Chemicals 

DPPH (98.5% purity), methanol, and 

phosphate (HPLC ≥ 99.9%) were obtained from 

Macklin Co. Ltd. (Shanghai, China); rutin, quercetin, 

and kaempferol (HPLC ≥ 98%) were obtained from 

Shanghai Yuanye Bio-Technology Co., Ltd. 

(Shanghai, China); and hemicellulase (≥ 200 U/mg) 

was obtained from Aladdin Reagent Co., Ltd. 

(Shanghai, China). The remaining chemicals 

(analytical grade) were obtained from Sinopharm 

Chemical Reagent (Shanghai, China). 

 

Sample preparation 

Purple-flesh potatoes, each weighing 

approximately 90 g with a uniform shape (length:  9 - 

11 cm; diameter: 4 - 5 cm), and harvested in October 

2022, were sourced from a local market in Bengbu, 

China. 

Fresh purple potatoes were thoroughly cleaned 

and cut into 5 mm slices, dried at a constant 

temperature of 40°C in an electric thermostatic drying 

oven (Shanghai Yuejin Medical Equipment Co., Ltd., 

China), crushed and ground, passed through a 40-

mesh sieve, sealed, and stored under a shady shade.  

 

Ultrasound-assisted enzymatic extraction  

Extraction of total flavonoids  

Purple potatoes were placed in a brown reagent 

bottle soaked in acidified ethanol, homogeneously 

mixed, rehydrated for 30 min, and extracted in a PS-

20A ultrasonic bath (Changzhou Henglong 

Instrument Co., Ltd., China). The mixture was then 

centrifuged at 5,000 rpm for 10 min in a JW-3021H 

centrifuge (Anhui Jiawen Instrument  
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Co., Ltd., China). The extract was concentrated to 

remove ethanol, and adjusted to a fixed volume. 

Finally, the purple potato extract solution was stored 

at 4°C for 12 h. Following this, the concentrated 

extract was frozen and dried to produce purple potato 

extract. 

 

Effect of individual factors on TFY 

The method reported by Cai et al. (2016) was 

followed with slight modifications. Briefly, 0.5 g of 

purple potato powder was placed in a brown glass 

tube, and mixed with acidified ethanol (0.1% of HCL 

and C2H5OH in a ratio of 4:6) as the extractor. The 

fixed material ratio was 1:20, and the ultrasound 

power was 120 W. Next, the effects of hemicellulase 

addition (30, 40, 50, 60, and 80 µmL); extraction 

duration (20, 25, 30, 35, and 40 min); and temperature 

(40, 45, 50, 60, and 65°C) on the total flavonoid 

yields (TFY) of purple potatoes were examined. 

 

Response Surface Methodology 

Based on a single-factor test, RSM was used to 

examine how total flavonoid extraction was affected 

when purple potatoes were simultaneously treated 

with ultrasound and enzymes. The Box-Behnken 

responsive surface test design was used with three 

variables (enzyme addition, A; extraction time, B; 

and temperature, C) at three levels (-1, 0, and 1) to 

evaluate the effect of the two interaction terms on 

TFY.  

 

Artificial Neural Networks  

The ANN, a computational model inspired by 

biological neural networks, comprises interconnected 

neurons that process and analyse input data using 

adjustable synaptic weights and thresholds to 

generate the corresponding outputs. The literature 

corroborates the superior predictive capabilities of 

ANN over the RSM (Wu et al., 2024). Therefore, 

based on the RSM experimental results, the neural 

network fitting toolbox in MATLAB was employed 

to develop a predictive model for the experimental 

data generated from purple potatoes. This model 

established a non-linear relationship between the 

three input variables (independent variables) and the 

response (target output). The architecture of the 

network, comprising an input layer (variables A, B, 

and C) and an output layer, was determined using a 

Box-Behnken design (BBD). To mitigate the 

overfitting risks associated with excessive hidden 

layers, a single hidden layer was implemented, and 

the Levenberg-Marquardt backpropagation algorithm 

was utilised for network optimisation. The structural 

configuration of the model was as follows. 

 

(1) Input layer design  

Based on the results of the single factor 

experiments, enzyme addition, temperature, and 

extraction duration were installed as input layer nodes 

of the network model, and used as naturalisation 

treatments in Eq. 1: 

 

𝑋𝑖𝑝
′ =

𝑋𝑖𝑝−𝑚𝑖𝑛(𝑋𝑖𝑝)

𝑚𝑎𝑥(𝑋𝑖𝑝)−𝑚𝑖𝑛(𝑋𝑖𝑝)
           (Eq. 1) 

 

where, 𝑋𝑖𝑝= primary training sample input data, 

min(𝑋𝑖𝑝) and max(𝑋𝑖𝑝)= minimum and maximum 

values in the input training sample data, respectively, 

and 𝑋𝑖𝑝
′ = result of the naturalisation. All the datasets 

were mapped in between [0,1]. The sample datasets 

obtained were divided into three groups: 70% for 

training, 15% for testing, and 15% for validation. At 

the same time, the input of the layers in the network 

was updated in Eqs. 2 and 3: 

 

 =
i

ipijj xwx

             (Eq. 2) 

 

( )  =
j

jjkn xwky

            (Eq. 3) 

 

In this case, the connection values between the 

input and intermediate layers, and between the 

intermediate and output layers, were defined as 𝑤𝑖𝑗 

and 𝑤𝑗𝑘, respectively. 

 

(2) Intermediate layer design 

The primary function of the intermediate layer 

in an ANN is to extract and modify the characteristics 

of input sample data to facilitate enhanced learning 

and prediction capabilities in the output layer. 

Generally, the larger the number of layers in the 

intermediate layer and the more neuronal nodes, the 

stronger the network’s expression capacity; however, 

it also increases the network training duration and 

computational costs. Considering the stability and 

saturation of the sample dataset in the intermediate 

layer processing, to improve the model’s 

computational efficiency and to avoid over-

adaptation during sample dataset training, the 

intermediate layer had one layer and the activation 

function for each neuronal node was selected as 
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Rectified Linear Unit (Relu). When determining the 

number of intermediate-layer neurons 𝑁𝑚, Eq. 4 was 

used: 

 

𝑁𝑚 =
𝛼∗√𝑁𝑖+𝑁𝑜

𝑁𝑠
+ 𝛽                        (Eq. 4) 

 

where, Ni and No = numbers of neurons in the input 

and output layers, respectively, and Ns = number of 

samples in the training set 𝛼，𝛽 ∈ [0,1]. To 

minimise the network error and model training time, 

the relevant coefficient adjustment was performed 

using the test error method to obtain the optimal 

combination of the implicit layer and passing function 

(minimum error condition), and the adjusted 

parameter when the number of neurons 𝑁𝑚 = 9 and 

the above conditions were met (Hornik et al., 1989; 

Said et al., 2020). 

 

(3) Particle swarm optimisation (PSO) artificial 

neural network algorithm 

Owing to the limited linear generalisation 

capacity and slow convergence rate of traditional 

ANN, there is a high likelihood of encountering local 

minima, and increased mistakes during the 

computation process. The particle swarm 

optimisation algorithm is used to optimise the weights 

between the intermediate and output layer, and differs 

from other optimisation algorithms (e.g., genetic and 

gradient descent algorithm). It extracts the 

behavioural characteristics of the acquired sample 

individuals, and interacts with the information of the 

individual and the global extremum in the cooperative 

game, which is suitable for dealing with the complex 

interaction between multiple variables such as 

enzyme addition, time, and temperature in the UAEE. 

In addition, the network weights are dynamically 

adjusted based on historical empirical data, 

effectively avoiding the trap of local minima to 

improve the prediction accuracy and stability of the 

ANN, and eventually realise the search for the 

optimal weights of individuals in the solvable space. 

In the D-dimensional search space, there are n sample 

datapoints composed of particle populations as 

𝑋(𝑋1, 𝑋2, ⋯ , 𝑋𝑛), where the position information of 

the i-th particle can be represented by a D-

dimensional vector 𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝐷]𝑇, which is 

also a potential solution to the problem, the speed of 

the i-th particle is 𝑉𝑖, the individual adjustment value 

is 𝑃𝑖 = [𝑝𝑖1, 𝑝𝑖2, ⋯ , 𝑝𝑖𝐷]𝑇, and the overall value of the 

population is 𝑃𝑔 = [𝑝𝑔1, 𝑝𝑔2, ⋯ , 𝑝𝑔𝐷]
𝑇

. The speed 

and position of the particle are updated in Eqs. 5 and 

6, as follows: 

 

( ) ( )k
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            (Eq. 6) 

 

where, 𝜔 = inertia weights, 𝑑, 𝑖 ∈ [1, 𝑛], 𝑘 = current 

iterations, 𝑉𝑖𝑑 = speed of the particles under the 

current dimension, 𝑐1 and 𝑐2 = acceleration factors, 

and 𝑟1 and 𝑟2 = random number between the locations 

of [0,1].  

 

(4) Processing input and output samples 

To better predict the difference between the 

predicted value and the true value, the mean absolute 

error (MAE), the root mean square error (RMSE), and 

the determination coefficient (R2) were used as the 

evaluation criteria for the model, calculated using 

Eqs. 7, 8, and 9, respectively (Jha and Sit, 2021): 

 


=

−=
n

i

ii YY
n
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            (Eq. 7) 
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where, 𝑌𝑖 and 𝑌𝑖
∗ = true and predicted values of the 

total flavonoid yields of purple potatoes during I 

training, respectively, and 𝑌̄𝑖 = average of the purple 

potato extract. 

 

Determination of TFY  

Using slightly modified method of Dewanto et 

al. (2002), rutin was used as the standard to analyse 

the total flavonoid content of purple potatoes. A stock 

solution of 0.2 mg/mL rutin was prepared and diluted 

to 0.02, 0.04, 0.06, 0.08, and 0.100 mg/mL 

concentrations for use as standard solutions. Next, 3 

mL standard solution was added to the mixture, 

followed by the addition of 1.5 mL of 15% NaNO2 

solution, and stirred for 6 min. Next, 1.5 mL of 5% 

Al(NO3)3 solution was added to the solution, and 

stirred for 6 min. Then, 20 mL of 4% NaOH solution 
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was added, and stirred for 1 min. Finally, absorbance 

value A was measured at 510 nm to obtain a standard 

curve using the standard equation: y = 0.4382x – 

0.0027, R2 = 0.9991. Three millilitres of purple potato 

extract liquid in distilled water were used as a blank 

control.  

 

Determination of antioxidant activity 

Determination of OH clearing capacity 

The OH clearance capacity was determined 

using a slightly modified methods of Wang et al. 

(2013). Briefly, the purple potato extract powder was 

dissolved in 70% ethanol, and diluted to the 

concentrations of 0.02, 0.03, 0.04, 0.05, 0.06, 0.12, 

and 0.24 mg/mL before analysis. A 0.5 mL sample of 

each concentration was mixed with 1 mL of 10 

mmol/L salicylic acid-ethanol solution, 1 mL of 6 

mL/L FeSO4 solution, 1 mL of 6 mmol/L H2O2, and 

the oscillating mixture for 1 min. The mixture was 

incubated at 37°C in a water bath for 10 min, and 

absorbance was determined at 510 nm (A1). Ethanol 

absorbance was also determined at 510 nm (A0). 

Salicylic acid-ethanol solution and double-oxygen 

water absorbance was also determined at 510 nm 

(A2). An equivalent concentration of vitamin C (Vc) 

was used as the positive control. The OH clearance 

capacity was calculated using Eq. 10: 

 

OHclearance
rate

%
= [1 − (A1 − A2)/A0]  × 100% 

(Eq. 10) 

 

Determination of DPPH clearing capacity  

The DPPH clearance capacity was determined 

according to Hu et al. (2016) with slight adjustments. 

Briefly, the purple potato extract powder was 

dissolved in 70% ethanol, and diluted to 0.02, 0.03, 

0.04, 0.05, 0.06, 0.12, and 0.24 mg/mL 

concentrations before analysis. Next, 0.5 mL sample 

of each concentration was mixed with 1.5 mL of 0.1 

mmol/L DPPH in the dark for 0.5 h, and the 

absorbance value was measured at 517 nm; an 

equivalent concentration of Vc was used as the 

positive control. The DPPH clearance capacity was 

calculated using Eq. 11: 

 

DPPH clearance rate/% = (1 − A1/A0)  × 100%  

(Eq. 11) 

 

where, A1 and A0 = absorbance values of the sample 

and DPPH mixture, and ethanol and DPPH mixture, 

 

respectively. 

 

High-performance liquid chromatography (HPLC) 

analysis 

The extract was subjected to HPLC analysis 

(Waters Inc., Milford, CT, USA) according to Xi et 

al. (2015), with minor modifications. Samples, rutin, 

quercetin, and kaempferol (5 mg each) were diluted 

in methanol to yield 0.2 mg/mL standard solutions. A 

total of 0.1 g of purple potato extract was dissolved in 

25 mL of methanol. The extract was reconstituted to 

a test solution with a concentration of 4 mg/mL, and 

stored at 4°C until analysis. Test sample preparation: 

samples were filtered through a 0.45 µm membrane 

before the HPLC analysis, which was performed 

under following conditions: Zorbax Eclipse C18 

chromatographic column, methanol-0.4% phosphoric 

acid (55:45) as the mobile phase, 1 mL/min flow rate, 

30°C column temperature, 280 nm detection 

wavelength, and 10 µL of injection volume. 

 

Fourier Transform Infrared Spectroscopy (FTIR) 

analysis 

Samples were obtained under optimal 

conditions, frozen, and dried prior to the analysis. A 

scan was performed within the wavelength range of 

400 - 4000 cm-1 using FTIR (Thermo Electron Inc., 

San Jose, CA, USA). 

 

Statistical analysis  

Each experiment was performed in three 

replicates. Data analysis and visualisation was 

performed using SPSS 26 (p < 0.05), Design Expert 

13.0, Origin 2019, and MATLAB R2019a software. 

 

Results and discussion 

 

Effects of individual factors on TFY 

Effects of enzyme addition on TFY  

Figure 1A shows that the addition of enzymes 

at 30 - 50 U/mL concentrations substantially 

enhanced TFC extraction from purple potatoes. The 

TFY reached its peak of 7.82 mg/g when 

hemicellulose was added at 50 U/mL concentration. 

Elevated enzyme concentration enhances enzyme-

substrate interaction kinetics. However, excessive 

enzyme addition reduced the TFY due to enzyme 

saturation, substrate inhibition, and increased 

solution viscosity, which created sub-optimal 

conditions for enzymatic activity and final product 

formation (Tchabo et al., 2015; Arbianti et al., 2023). 
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Figure 1. Effects of enzyme addition (A), temperature (B), and time (C) on total flavonoid yields; and 

response surface of interactive items’ effects on total flavonoid yields [(D), (E), and (F)]. 

 

Effects of extraction temperature on TFY 

As shown in Figure 1B, TFY decreased after 

an initial increase. Within 45–- 50°C, the TFY 

increased to a maximum of 8.93 mg/g at 50°C, but 

decreased as the temperature was increased further. 

An optimal ultrasonic temperature can facilitate the 

permeation of molecules, and enhance the solubility 

of flavonoid compounds, while temperatures higher 

than optimal, induce the degradation of soluble 

proteins, resulting in increased viscosity of the 

reaction system that prevents dissolution of flavonoid 

compounds. Certain flavonoids are degraded at high 

temperatures. Furthermore, the presence of dissolved 

contaminants in the solution can inhibit the extraction 

of total flavonoids (Xu et al., 2018; Liu et al., 2019). 

 

Effects of extraction duration on TFY 

Figure 1C shows that the TFY increased within 

20 - 35 min, reaching a peak of 9.56 mg/g at 35 min, 

but decreased when the extraction time exceeded 35 

min. An appropriate ultrasound extraction duration 

allowed the intracellular substances in purple potato 

cells to fully react with the enzymes and solvents, 

promoting the dissolution of flavonoid compounds. 

In contrast, longer ultrasound extraction duration 

promoted the dissolution of non-flavonoid 

substances, which may degrade the flavonoids, thus 

decreasing the TFY (Zhao et al., 2016; Liu et al., 

2019). 

 

RSM 

The response factor and test level were 

determined based on the findings discussed earlier. 

The results of the response tests are listed in Table 1. 

Differential and significance analyses for the 

regression model were performed using Design-

Expert 13 software (Figure 2). Through 

multidimensional adjustment analysis, the 

corresponding regression equations for TFY, enzyme 

addition, extraction time, and extraction temperature 

were obtained as follows: 

 

Y = 9.66 + 0.30 × A − 0.12 × B − 0.13 × C +

0.21 × AB − 0.04 × AC − 0.04 × BC − 1.32 ×

A2 − 0.77 × B2 − 0.57 × C2  

 

The model summary statistics for TFY are 

shown in Table 2. Statistical significance was set at p 

< 0.05. Furthermore, to assess the suitability and 

sufficiency of the model, the coefficient of 

determination (R2) and adjusted R2 were calculated 

(Quanhong and Caili, 2005). The lack-of-fit analysis 

was conducted to determine whether the model 

explained the experimental data. 

Our findings showed that the model findings 

were statistically significant (p < 0.0001), whereas the 

missing items were not significant, suggesting that 

the model was highly compatible. The coefficients of 

determination (R2 = 0.9919) and adjustment  
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Table 1. Design and results of Box-Behnken experiment. 

Number 
Enzyme addition 

(U/mL) 

Time 

(min) 

Temperature 

(°C) 

Total flavonoid yield 

(mg/g) 

1 40 30 50 7.48 

2 60 30 50 7.82 

3 40 40 50 6.91 

4 60 40 50 8.10 

5 40 35 45 7.60 

6 60 35 45 8.13 

7 40 35 55 7.51 

8 60 35 55 7.96 

9 50 30 45 8.64 

10 50 40 45 8.37 

11 50 30 55 8.35 

12 50 40 55 7.94 

13 50 35 50 9.56 

14 50 35 50 9.72 

15 50 35 50 9.64 

16 50 35 50 9.65 

17 50 35 50 9.75 

 

 

 
Figure 2. PSO-ANN model for ultrasonic wave extract of total flavonoid yields (A); correlation coefficient 

R-value for training, validation, testing, and overall dataset (B); and comparison effect diagram for total 

flavonoid yields of optimised ANN (C). 
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Table 2. Results of analysis variance. 

Source 
Sum of 

squares 
df Mean square F-value P-value 

Model 13.43 9 1.49 95.65 < 0.0001 

A (enzyme addition) 0.73 1 0.74 46.50 0.0002 

B (time) 0.12 1 0.12 7.66 0.0278 

C (temperature) 0.14 1 0.14 9.19 0.0191 

AB 0.18 1 0.18 11.56 0.0114 

AC 8.0 × 10-3 1 8.0 × 10-3 0.51 0.4970 

BC 5.2 × 10-3 1 5.2 × 10-3 0.34 0.5807 

A2 7.30 1 7.30 467.78 < 0.0001 

B2 2.48 1 2.48 158.83 < 0.0001 

C2 1.37 1 1.37 87.93 < 0.0001 

Residual 0.11 7 0.016   

Lack of Fit 0.089 3 0.030 5.85 0.0605 

Pure Error 0.020 4 5.1 × 10-3   

Cor Total 13.54 16    

R2 0.99     

Adj. R2 0.98     

 

(R2adj = 0.9816) values indicated that the model did 

not incorporate insignificant terms, and that its 

predictions closely matched the experimental values 

(Tchabo et al., 2015). 

Among enzyme addition, extraction duration, 

and extraction temperature, A, B2, and C2 exhibited 

significance levels below 0.01, indicating a highly 

significant impact on TFY. In contrast, B, C, and AB 

demonstrated a significance level of < 0.05, 

indicating a substantial effect on TFY. The F-number 

indicated that the total flavonoids result was most 

influenced by A, followed by C and B. 

Figures 1D - 1F show the peak-rising pattern 

for the response of each component interaction. The 

extraction rate of total flavonoids first increased and 

then decreased with the addition of enzymes, and 

increasing extraction temperature and extraction 

duration. The high-line diagram exhibited a closer 

resemblance to an ellipse, indicating a higher level of 

interaction. AB, AC, BC, and BC exhibited the 

strongest interactions, which corroborated the 

findings of differential analysis. 

Based on Design Expert 9.0.6, an optimum 

extraction process for purple potato was analysed 

using a responsive test model with enzyme addition 

at 49.69 U/mL, extraction duration of 35.15 min, and 

extraction temperature of 49.77°C, with a theoretical 

extraction of TFY of 9.65 mg/g. When the process 

parameters were changed to 50 U/mL enzyme, 

 

extraction duration of 35 min, and an extraction 

temperature of 50°C, the TFY was 9.67 mg/g, and the 

actual relative error of the theoretical value was 

1.78% (p < 0.05), indicating that RSM could be used 

to predict the conditions of total flavonoids 

extraction. 

 

Results of PSO-ANN analysis 

Next, experimental findings were subjected to 

ANN analysis using MATLAB R2019a software. 

Seventeen datasets were used as experimental 

samples for testing and validation, and PSO algorithm 

was used to optimise the parameters for optimum 

extraction conditions. The initial particle group size 

was set to 20, the learning rate and dynamic factor 

were both set to 0.01, the training number was set to 

1000 times, and the adaptation function was a trained 

network model. These tests were performed to 

achieve a higher TFY. The developed neural network 

structure diagram contained three variables: the input 

and output neurons containing the TFY (Figure 2A). 

In Figure 2B, the training-related coefficients 

of the PSO-ANN model are shown. When the 

iterations were 14 h, the training of the PSO-ANN 

neural network ended with an average error of 

0.0053558, and the R values of the training, 

validation, and test data were 0.9977, 0.98973, and 

0.99263, respectively, with a total R value of 0.99553. 

The values were close to 1, indicating that the 

 



                                                                          Cao, F., et al./IFRJ 32(2): 552 - 564                                                           560    

 

optimised neural-network model could be reliably 

used to analyse and optimise the conditions of the 

experimental process. 

Figure 2C shows the pre- and post-training sets 

and sample values for the optimised artificial neural 

networks. Based on optimised analysis, 51.34 U/mL, 

36.21 min, and 53.12°C were the ideal extraction 

process parameters for enzyme amount, extraction 

duration, and extraction temperature, respectively, 

with the theoretical TFY being 9.81 mg/g. Similarly, 

the modified process conditions were adjusted to an 

enzyme addition of 51 U/mL, an extraction duration 

of 36 min, and an extraction temperature of 53°C. 

Under these conditions, the TFY was 9.82 mg/g, and 

the relative error of the test value to the theoretical 

value was 0.10%, which was not significant, and the 

test result was higher than the RSM value. Previous 

studies on the optimisation of bioactive compound 

extraction processes have demonstrated that both 

RSM and ANN models exhibited robust predictive 

capabilities, with ANN often outperforming RSM in 

terms of non-linear parameter interactions and 

generalisation accuracy (Said et al., 2020; Onukwuli 

et al., 2021; Wu et al., 2024). 

 

Validation trial results 

A comparison of the extraction processes after 

the optimisation of the two models is shown in Table 

3. The predicted values in both the RSM and PSO-

ANN methods were close to the real values under 

optimal conditions, and the relative error value of 

PSO-ANN was significantly lower than that of the 

RSM method, and was closer to the actual extraction 

results. These findings suggested that the method 

could provide a reference for optimising the process 

of extracting total flavonoids. 

 

Table 3. Comparison between predicted and experimental values for optimal conditions of RSM and PSO-ANN. 

Optimisation 

method 

Enzyme 

addition 

(U/mL) 

Time 

(min) 

Temperature 

(°C) 

Total flavonoid yield (mg/g) 
RE 

(%) 
Predicted 

value 

Experimental 

value 

RSM 50 35 50 9.65 9.67 0.21 

PSO-ANN 51 36 53 9.81 9.82 0.10 

 

Analysis of antioxidant activity  

Figure 3A shows a rapid increase in 

OHclearance rate from 33.9 to 76.8% when the 

concentration of the purple potato extract increased 

from 0.02 to 0.12 mg/mL. As the purple potato extract 

concentration increased, the OH clearance rate 

gradually increased, reaching a maximum of 81.6%. 

At equivalent concentrations, Vc exhibited a superior 

ability to eliminate OH compared to purple potato 

extract. The IC50 value of the purple potato extract 

(0.037 mg/mL) was slightly higher than that of Vc 

(0.013 mg/mL), indicating its strong radical 

scavenging activity. 

Figure 3B shows that as the concentration of 

purple potato extract increased from 0.02 to 0.06 

mg/mL, the rate at which DPPH was cleared 

increased significantly from 11.6 to 40.1%. As the 

purple potato extract concentration increased further, 

the rate of DPPH clearance gradually reached 61.8%. 

At equivalent concentrations, The IC50 value of the 

purple potato extract (0.12 mg/mL) was slightly 

higher than that of Vc (0.029 mg/mL), indicating its 

ability to scavenge DPPH radicals and its potential 

antioxidant efficacy. 

 

HPLC analysis 

HPLC is widely employed for the 

identification and quantification of flavonoids due to 

its exceptional precision, sensitivity, and 

reproducibility in analysing complex matrices 

(Blunder et al., 2017; Mizzi et al., 2020; Teuta et al., 

2024). The analysis of the purple potato extracts is 

shown in Figures 3C and 3D. Figure 3C shows a 

chromatogram illustrating retention times of standard 

chemicals rutin, quercetin, and kaempferol as 5.1137, 

11.3913, and 19.1250 min, respectively. Figure 3D 

shows the chromatogram of the purple potato extract. 

We observed three distinct peaks with retention times 

of 5.1157, 11.4317, and 19.2150 min, respectively. 

These retention times corresponded to those of rutin, 

quercetin, and kaempferol. Additional chemicals 

showing peaks were not identified; therefore, further 

research is necessary to identify them. 

 

FTIR analysis 

FTIR has emerged as a prominent analytical 

tool for food chemistry and offers rapid, precise, and 

cost-effective results that require minimal sample 

volumes. Its high sensitivity and ability to preserve 
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Figure 3. Scavenging effect on OH and DPPH [(A) and (B)], HPLC chromatogram [(C) and (D)], and 

infrared spectrogram of sample (E). 

 

compound structures further enhance its applicability 

in complex matrix analyses (Lu et al., 2011; Zheng et 

al., 2017; Baltacıoğlu et al., 2024). Figure 3E shows 

the FTIR spectral features of the purple potato extract. 

The absorption peak at 3277.97 cm-1 can be attributed 

to the presence of -OH, while the weaker absorption 

peak at 2927.10 cm-1 can be attributed to the presence 

of a C-H bond (Thummajitsakul et al., 2020). The 

stronger peak at 1624.27 cm-1 can be attributed to the 

C=O bond (Lu et al., 2011), whereas the weaker peak 

at 1518.37 cm-1 can be attributed to the in-plane C-H 

bending vibration of the aromatic phenyl rings 

(Schulz and Baranska, 2007). Furthermore, alkyl 

stretching vibration was responsible for the 

absorption peak at 1042.48 cm-1, the C=C bond of 

cyclobenzene can be attributed to the peak at 988.32 

and 923.44 cm-1 (Baltacıoğlu et al., 2024). The FTIR 

spectral features displayed characteristic absorption 

peaks corresponding to flavonoid functional groups, 

indicating the presence of flavonoid compounds in 

the extracts (Colombo et al., 2019). The consistency 

between the HPLC quantification and FTIR spectral 

data validated the efficacy of the UAEE method. 

 

Conclusion 

 

The present work demonstrated the optimum 

conditions for the extraction of total flavonoids using 

RSM and PSO-ANN methods. Both the models 

exhibited superior reliability than that of traditional 

methods. Furthermore, the PSO-ANN model 

predicted relatively small errors in total flavonoid 

extraction with higher determination factors, and the 

best conditions for the extraction process. The purple 

potato extract contained flavonoids as confirmed by 

performing ultraspectral and HPLC analyses. The 
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elimination of OH and DPPH demonstrated the 

presence of antioxidant activity of the purple potato 

extracts. In summary, the PSO-ANN model 

demonstrated high efficiency in optimising and 

predicting the extraction processes. This innovative 

approach for extracting bioactive compounds from 

purple potatoes established a robust framework with 

significant implications for the food and 

pharmaceutical industries. This approach will enable 

the development of antioxidant-rich functional foods 

and support the scalable, sustainable extraction of 

bioactive compounds from diverse dietary sources. 
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